Rapid Feature Extraction for Optical Character Recognition
نویسندگان
چکیده
Feature extraction is one of the fundamental problems of character recognition. The performance of character recognition system is depends on proper feature extraction and correct classifier selection. In this article, a rapid feature extraction method is proposed and named as Celled Projection (CP) that compute the projection of each section formed through partitioning an image. The recognition performance of the proposed method is compared with other widely used feature extraction methods that are intensively studied for many different scripts in literature. The experiments have been conducted using Bangla handwritten numerals along with three different well known classifiers which demonstrate comparable results including 94.12% recognition accuracy using celled projection.
منابع مشابه
Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملA Survey on Feature Extraction Based on Allograph Technique
This survey describes the state of art of feature extraction based on allograph in the field of character recognition. It is based on extensive review of the literature on various definitions given by researchers on shape recognition algorithms particularly based on allograph. Keywords— Optical Character Recognition, allograph, feature extraction.
متن کاملOptical Character Recognition Using 26-Point Feature Extraction and ANN
We present in this paper a system of English handwriting recognition based on 26-point feature extraction of the character. Basically an off-line handwritten alphabetical character recognition system using multilayer feed forward neural network has been described in our work. Firstly a new method, called, 26-point feature extraction is introduced for extracting the features of the handwritten a...
متن کاملOptical Character Recognition using 40-point Feature Extraction and Artificial Neural Network
We present in this paper a system of English handwriting recognition based on 40-point feature extraction of the character. Basically an off-line handwritten alphabetical character recognition system using multilayer feed forward neural network has been described in our work. Firstly a new method, called, 40-point feature extraction is introduced for extracting the features of the handwritten a...
متن کاملA study on structural method of feature extraction for Handwritten Character Recognition
This paper presents the study reports of major process involved in a handwritten character recognition system. We focus on the various feature extraction techniques as the recognition mainly depends on the features extraction. After studying the various features we have modified an existing feature extraction technique by introducing two more feature vectors. After the introduction of these two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1206.0238 شماره
صفحات -
تاریخ انتشار 2012